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Abstract
As is well known, every mixed or pure state of a bipartite quantum system is
given by a statistical operator, which determines, in terms of its two reduced
statistical operators, the subsystem states. Necessary and sufficient conditions
for the existence of a composite-system state, and, separately, for the possibility
of its being correlated or uncorrelated in terms of the range dimensions of the
three mentioned statistical operators are derived. As a corollary, it is shown
that it cannot happen that two of the mentioned dimensions are finite and the
third is infinite.

PACS numbers: 02.30.Tb, 03.65.Db

It is assumed throughout that one can speak of quantum correlations in a composite (1 + 2)

quantum system if and only if a correlated composite-system statistical operator ρ3 is given.
(The index 3 instead of 12 is used for reasons that will become clear below in condition (1).)
Let, further,

ρ1 ≡ Tr2 ρ3 ρ2 ≡ Tr1 ρ3

be the reduced statistical operators (physically, the states of the subsystems), where ‘Tr2’ and
‘Tr1’ denote the respective partial traces. Let the dimensions of the ranges R(ρi), i.e., the
range dimensions, be denoted by di , i = 1, 2, 3.

Physically, a statistical operator ρ3 is a general, i.e., a pure or mixed, state of a composite
system. It is uncorrelated if ρ3 = ρ1 ⊗ ρ2, and it is correlated otherwise.

The theorem to be proved in this paper works with three range-dimension conditions:
The cyclic inequality conditions:

d1 � d2d3 d2 � d3d1 d3 � d1d2 (1)
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the common lower bound condition:

2 � d1, d2 (2)

and, finally,
the product condition:

d3 = d1d2. (3)

It is easily seen that (3) implies (1) and obviously the former does not follow from the
latter, i.e., (3) is a stronger requirement than (1).

The theorem on range-dimension conditions for bipartite states goes as follows:

(i) For every (correlated or uncorrelated) state ρ3 conditions (1) are valid; and vice versa, for
every three natural numbers d1, d2, d3 satisfying conditions (1) there exists at least one
state ρ3 implying them as its range dimensions.

(ii) One can have a correlated composite-system state ρ3 if and only if, in addition to the
cyclic inequality conditions (1), also the common lower bound condition (2) is valid.

(iii) For every uncorrelated state ρ3 condition (3) is valid; and vice versa, if three natural
numbers d1, d2, d3 satisfy condition (3), then there exists at least one uncorrelated state
ρ3 for which these numbers are the range dimensions.

At first sight one may be puzzled because ‘correlated’ and ‘uncorrelated’ are mutually
exclusive concepts for states, and the corresponding claimed conditions do not exclude each
other: both conditions (ii) and (iii) can be simultaneously valid.

The answer, of course, lies in the fact that in the mentioned case both correlated and
uncorrelated states exist. Namely, the ‘sufficiency’ in the condition does not claim that the
condition necessarily implies correlations or lack of them respectively; it only implies the
existence of a correlated (or an uncorrelated) state with the given range dimensions.

It should be pointed out that none of the three dimensions is assumed to be finite.
Conditions (1) will be seen to follow from a remarkable fact:

d3 = 1 ⇒ d2 = d1 (4)

which is known [1], but, perhaps, not well known. It is easy to see that condition (4) follows
from (1), but the latter has a wider scope than the former: it covers all states, not only the pure
ones (d3 = 1).

It is a corollary of conditions (1) that one cannot have precisely one of the three dimensions
infinite. If, e.g., d1 were infinite, and d2 and d3 were finite, this would contradict the first
inequality in (1). The symmetrical arguments hold for the other two cases. The conditions
obviously allow all three of the dimensions or any two or none to be infinite.

The theorem is a modest contribution to the study of quantum correlations, and the latter
are important for quantum information theory, as well as for quantum communication and
quantum computation theories [2].

The rest of this paper is devoted to a proof of the theorem. We begin by proving claim (i).
To prove the necessity of the first condition in (1), we assume that an arbitrary composite-

system statistical operator ρ3 is given. Every such operator has a purely discrete (finite or
infinite) spectrum ([3], theorems VI.16 and VI.21). Hence, we can write it in a spectral form:

ρ3 =
d3∑

n=1

rn|�(n)〉3〈�(n)|3. (5)

On account of (4), one has

d
(n)
1 = d

(n)
2 n = 1, 2, . . . , d3 (6)
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where the symbols d
(n)
i denote the respective dimensions of the ranges R(ρ(n)

i

)
, and

ρ
(n)
i are the reduced statistical operators of the pure characteristic states |�(n)〉3 in (5),

i = 1, 2; n = 1, 2, . . . , d3.
Taking the partial trace over subsystem 2 in (5), one obtains

ρ1 =
d3∑

n=1

rnρ
(n)

1 . (7)

We replace each ρ
(n)

1 in (7) by a spectral decomposition into pure states with positive
characteristic values, i.e., we write

ρ1 =
d3∑

n=1

rn

d
(n)
1∑

j=1

r
(n)
j

∣∣∣φ(n)
j

〉
1

〈
φ

(n)
j

∣∣∣
1
. (8)

Let us recall the known fact that, in general, the state vectors corresponding to the pure states
of which the state is a mixture span (as linear combinations and limiting points) the topological
closure R̄(ρ) of the range of the statistical operator ρ that corresponds to the mixture. Hence,
one can conclude that

R̄(ρ1) =
d3∑

n=1

R̄
(
ρ

(n)
1

)
(9)

is valid. (The sum in (9) is an ordinary sum of subspaces, i.e., the LHS is the linear
and topological span of the union of the RHS subspaces. The terms need not be linearly
independent, let alone orthogonal.)

As to the dimensions, (9) evidently implies

d
(n)
1 � d1 �

d3∑
n′=1

d
(n′)
1 n = 1, 2, . . . , d3. (10)

(The second equality is achieved if the sum in (9) is a direct one or, in particular, an orthogonal
one.) Naturally, also the symmetrical inequalities hold true (and they are proved by the
symmetrical argument):

d
(n)
2 � d2 �

d3∑
n′=1

d
(n′)
2 n = 1, 2, . . . , d3. (11)

Substituting (6) in the second inequality in (10), one obtains

d1 �
d3∑

n=1

d
(n)
2 .

Utilizing the first inequality in (11), one further has

d1 �
d3∑

n=1

d2 = d2d3.

The second inequality in (1), i.e., d2 � d3d1, is proved symmetrically. The last relation
in (1), i.e., d3 � d1d2, is known (see, e.g., [4], relation (11) therein).

To prove sufficiency of the three inequalities in (1), we assume first that d3 is the dominant
quantity, i.e., that we have

d2 � d1 � d3 (12)
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and we give a construction of a statistical operator ρ3 having the given dimensions. (Within
the case of dominance of d3, the other possibility, namely d1 � d2, is handled symmetrically.)

Further, we take an orthonormal (ON) basis {|φ(i)〉1 : i = 1, 2, . . . , d1} spanning the range
R(ρ1), and an ON basis {|χ(j)〉2 :j = 1, 2, . . . , d2} spanning the range R(ρ2). (If a range
is infinite dimensional, then it is understood that an ON basis spans the topological closure
of the range.) Proceeding further, we make the direct products: ρ̄

(i,j)

3 ≡ |φ(i)〉1〈φ(i)|1 ⊗
|χ(j)〉2〈χ(j) |2, for all pairs (i, j).

Next, we form the sequence

ρ
(n=1)
3 ≡ ρ̄

(1,1)
3 , ρ

(n=2)
3 ≡ ρ̄

(2,2)
3 , . . . , ρ

(n=d2)
3 ≡ ρ̄

(d2,d2)
3

ρ
(n=d2+1)

3 ≡ ρ̄
(d2+1,1)

3 , ρ
(n=d2+2)

3 ≡ ρ̄
(d2+2,1)

3 , . . . , ρ
(n=d1)

3 ≡ ρ̄
(d1,1)

3

and join to it any (d3 − d1) states ρ̄
(i,j)

3 from the rest as

ρ
(n=d1+1)

3 , . . . , ρ
(n=d3)

3 .

Since d3 � d1d2 (the third inequality in (1)), there is a sufficient number of ρ̄
(i,j)

3 states
for this. If d2 = d1, then the second row is, of course, omitted. Analogously, if d1 = d3, the
last subset of states is omitted. Finally, we take a decomposition of 1 into d3 positive numbers
wn: 1 = ∑d3

n=1 wn, and the constructed ρ3 is by definition the mixture

ρ3 ≡
d3∑

n=1

wnρ
(n)
3 .

It is easy to see that this state, which is a mixture of orthogonal pure states, has the dimensions
di, i = 1, 2, 3, given at the beginning of our sufficiency proof for (1).

To proceed with our proof of sufficiency of the three inequalities in condition (1), for the
existence of a composite-system statistical operator ρ3 with the given dimensions, we now
assume that d3 is not the dominant quantity, i.e., that we have

d2, d3 � d1. (13)

(Again, the subcase d1, d3 � d2 is treated symmetrically.) Further, we give a construction of
a statistical operator ρ3 having the given dimensions.

We construct ρ3 in the spectral form

ρ3 =
d3∑

n=1

rn|�(n)〉3〈�(n)|3.

The characteristic values {rn : n = 1, 2, . . . , d3} are arbitrary fixed positive numbers such that∑d3
n=1 rn = 1.

To construct the characteristic vectors |�(n)〉3, we introduce an ON basis {|i〉1 : i =
1, 2, . . . , d1} spanning R(ρ1), and another ON basis {|j 〉2 : j = 1, 2, . . . , d2} spanning
R(ρ2). We break up the former basis into d3 disjoint sets of basis vectors, i.e., into subbases,
each containing at most d2 vectors. (This is possible because of the first inequality in (1).)
We enumerate the subbases by n = 1, 2, . . . , d3. Let Dn be the number of basis vectors in the
nth subbasis. Within this subbasis we enumerate the vectors by a subset of the indices of the
chosen ON basis in R(ρ2) as follows:

j =
(

n−1∑
n′=1

Dn′

)
+ 1,

(
n−1∑
n′=1

Dn′

)
+ 2, . . . ,

(
n−1∑
n′=1

Dn′

)
+ Dn.

(In the first subbasis the sums in parentheses are, of course, omitted.) When j reaches the
value d2, we count its values further cyclically: j = d2 + 1 ≡ 1, j = d2 + 2 ≡ 2, etc.
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Then we construct

|�(n)〉3 ≡
∑

j

αj |j 〉1 ⊗ |j 〉2 n = 1, 2, . . . , d3

where the αj are arbitrary nonzero complex numbers such that
∑

j |αj |2 = 1 for each value
of n independently, and ‘j ’ enumerates the vectors |i〉1 within the nth subbasis.

Obviously, on account of the disjointness of the mentioned subbases,

〈�(n)||�(n′)〉 = δn,n′.

It is easily seen that the range dimensions of the constructed ρ3 are precisely the initially
given quantities d1, d2, d3. This completes the proof of claim (i).

To prove claim (ii), we first prove the necessity of the common lower bound condition (2)
ab contrario.

Lemma. If d1 = 1 or d2 = 1 or both, then the corresponding state ρ3 is necessarily
uncorrelated, i.e., ρ3 = ρ1 ⊗ ρ2.

Proof. We assume d1 = 1 (with no assumption on d2). Let |a〉1 be a state vector
spanning R(ρ1), and let {|j 〉2 : j = 1, 2, . . . , d2} be an ON basis spanning R(ρ2). Since
R(ρ3) ⊆ (R(ρ1) ⊗ R(ρ2)) (cf again [4], relation (11) therein), we can expand ρ3 in the
dyadic operator basis:

ρ3 =
∑

j

∑
j ′

rjj ′ |a〉1〈a |1 ⊗ |j 〉2〈j ′ |2

= |a〉1〈a |1 ⊗
∑

j

∑
j ′

rjj ′ |j 〉2〈j ′ |2.

Taking the partial traces, one infers that ρ1 = |a〉1〈a |1, and that ρ2 = ∑
j

∑
j ′ rjj ′ |j 〉2〈j ′ |2,

and, finally, that ρ3 = ρ1⊗ρ2 as claimed. The case d2 = 1 and d1 �= 1 is proved symmetrically.
To prove sufficiency of condition (2) in conjunction with (1) for claim (ii), one should

note that both constructions in the above proof of claim (i) easily give a correlated state in this
case.

To prove claim (iii), we begin by necessity. Let ρ3 = ρ1 ⊗ ρ2, and let {|i〉1 : i =
1, 2, . . . , d1} and {|j 〉2 : j = 1, 2, . . . , d2} be characteristic subbases of ρ1 and ρ2, respectively,
spanning the respective ranges. Then

ρ3 =
d1∑

i=1

d2∑
j=1

rirj |i〉1〈i |1 ⊗ |j 〉2〈j |2

where the ri and rj are the corresponding characteristic values of ρ1 and ρ2, respectively. From
this characteristic decomposition of ρ3 with d1d2 terms one infers that the product condition
(3) is valid.

To prove sufficiency, we construct any ρ1 and ρ2 with the given range dimensions d1 and
d2, respectively, and multiply them: ρ3 ≡ ρ1 ⊗ ρ2.

�
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